Enterprise Engineering Forum

企业工程论坛
Categorized as: 基础研究   Tagged as: ,,

关于“基于模型的思想”的一些引述和评论

Author: 余彤鹰,  Source: 企业工程论坛,  Published: 2017-03-25

Excerpt: 围绕“基于其模型以达成与特定目标相关的功能与目的”这一基本思想,评述了一组比较有影响力和有代表性的学者的论述。

引言

现代科学与技术与人类工作与学习中,模型的广泛性愈发与语言、信息、系统等接近。尽管和许多具有高度一般性的概念(例如“信息”)一样,存有不少意义上的暧昧或分歧,但在诸如工程技术、教育、实证科学、数学与逻辑乃至气候预报、金融分析、时尚、艺术等等各种不同的领域中,对”模型”,从概念界定到作用方式,都能发现一些基本的一致的东西。换言之,有某种一般性的模型理论支配着广泛而且高度分散的模型应用。这里最基本的东西,就是一种基于模型的基本思想或方法

下面引述了一些不同时代不同领域杰出人物有关模型的阐述,都体现着基于模型的思想。它们是一般模型理论和模型化方法论在人类现有知识体系中的萌芽或印证。

路德维希·维特根斯坦 (1921)

一个较早的有非凡影响的阐述,出自维特根斯坦的经典著作《逻辑哲学论》;笔者认为,其中展现的最基本的东西,正是一种基于模型的世界观:

世界就是逻辑空间中事实的总和;我们为自己创造事实的图画,这些图画就是现实的模型。

维特根斯坦是20世纪最有影响力的哲学家之一,可以说是左右了近代西方哲学思想界的基本路向。在笔者看来,基于模型的思想他的逻辑哲学中非常清晰和明显,但也仅止于此。随之而来的哲学、逻辑学与科学思想等的发展,基本都专注于语言方面和形式化方面——模型概念方面,则基本上止步于这种思想萌牙的状态。在后面引述的阐述中,还可以体会这一点。

进一步考察这种观念的哲学背景,可以发现更多的线索。例如尼采的视角主义主张每个人的观念都受制于其环境所决定的视角;真理非绝对——它是来自各种视角不同观点的综合。联系到维氏逻辑哲学,这是一个非常清晰的观念:“我们”每个人都在根据自己的经验创造一副关于现实的独特图画——模型,这就是每个人的独特视角的体现。我们的共识、争议,都发生在我们各自模型的相同与不同之上。

肯尼斯·克雷克 (1943)

从维特根斯坦那里透露出来的基于模型的思想,很容易联系到人类认知研究中对模型作用的认识。著名心理学家和哲学家克雷克是现代认知科学的先驱,他引进了“心智模型”这个基本概念——不是意识或思维本身的模型,而是意识/大脑对现实世界建立并保持的模型。他指出:

大脑运作不是直接基于外部现实,而是基于内部创建的模型。大脑操纵和使用这些模型,以理解、模拟和预测世界的事件与动态。

这是一种非常基本的论断。不管是受其影响还是思想的重现,可以看到,这种“大脑/意识是基于对外部世界建立的模型”的假说,有不少的认同——虽则往往停留在一般概念性理解上,较少进入的系统架构性或实证性的层面。

赫伯特·斯塔霍维亚克 (1973)

斯塔霍维亚克是一名德国数学家、逻辑学家、控制论专家和哲学家。他曾于1973年出版了目前唯一发现的一本一般模型理论专著。从他的背景推测其研究将更多地反映某种系统/控制和逻辑的方面,然而他曾指出:

一切认知都在模型之中或通过模型达成。

这种认知与模型的关系,照理说,应该对人工智能的研究具有深刻的意义,从目前所了解的情况看,这个方向并没有得到有效的发掘。

马文·明斯基 (1965)

明斯基是当代人工智能领域的几位先驱之一,是目前最成功的计算机神经网络方向的奠基人。他在1965年曾指出,除了实验(实际测量),生物或智能机器需要通过模型来回答有关世界中事物的问题。他阐述道:

若一个生物可以回答关于假想实验的问题而无需实际进行实验,则表明该生物具有某些关于相应世界的知识。因为,他对该问题的回答必须是某种子机器或“模型”在生物内部之行为的编码描述,该子机器或“模型”反应了由问题带来的相关世界情况的编码描述。

虽然有这样基本的认识,但明斯基后来提出的一些框架和理论来看,似乎并没有抓住模型这个要点展开。

杰夫·霍金斯 (2004)

霍金斯是成功的硅谷传奇人物之一,作为一名杰出的计算机工程师,同时长期致力于大脑工作原理探索,并以此指导计算机人工智能的实现。他不但认为大脑的基本工作模式是基于模型的,而且此模型是基于存储/记忆的。在他2004年的著述中,有如下陈述:

大脑使用巨大的记忆创建世界的模型。你所学习和知道的一切都存储于这个模型之中。大脑用这个基于记忆的模型对未来事件做出持续的预测。预测将来正是智能的关键。

霍金斯的工作最值得关注度的,或许是用他基于存储(而不是基于中央处理单元)的大脑工作原理观点来直接指导人工智能机器的设计。而这正与笔者的基本想法吻合——同时,笔者相信,解释当今计算机神经网络/深度学习技术的所谓“黑盒子”内部的机制,“模型化”可能会是非常基本的方面;但首先要区分此模型并不是现在人工智能论文常见表述中经常看到的某种算法模型或某种学习网络模型那个“模型”。

布莱恩·史密斯 (1985)

在认知或大脑思维机制的角度,模型概念(心智模型)基本处于一种理论概念的位置,就像“语言”概念一样:没有人能告诉你语言的解剖学意义,或者实现语言功能的大脑结构是什么,语言“实体”或那怕一个句子在大脑中何处及如何储存。模型目前也类似。然而在人工机器——计算机方面则不然。模型在计算机系统中可以是一种实际的、计算机可处理的实体(例如,作为数据实体)。如前面提到的明斯基,他坚信人脑就是一种计算机器;但他在基于模型的基本思想面前并没有再进一步(例如实质性探讨模型化的架构),而是基本放弃了模型概念。在计算机科学的背景下,笔者特别重视跨越计算机与信息科学、认知科学和哲学等领域的杰出学者史密斯1985作出的具有经典意义的表述:

想象一下,左边是描述、程序或计算机系统(甚至一种思想——在这个考量中他们都是相似的),右边是现实的世界;二者之间是不可或缺的中介模型:它是现实世界理想中或预概念化的拟像,左侧的各种描述或程序等等皆据此而被理解。

当强调左侧是思想(人)的时候,史密斯所给出的正是一个“依赖模型的现实主义”世界观的明确图景(见后面);而当左侧是计算机时,则暗示着一种基本的计算机应用架构思想,正是笔者所提出的,基于模型的计算机应用架构。(注意:笔者也常用“模型驱动的应用系统架构”,但它完全不是软件模型驱动开发或模型驱动工程领域的模型驱动架构。)

承前所述,在计算机科学领域,基于模型的观念或架构思想本是很自然的,但事实上,这个基本方向从未得到应有的重视和发挥。这种基于模型的思想在史密斯这里,虽然比明斯基更落实,但似乎也止步于用以理解诸如需求规范和软件正确性的限制(受限于模型的正确性)等局部课题。这些年来可以看到,确实有一些应用体现了模型化思想,比如数据库的架构,业务流程支持/管理类的软件,还有许多软件的部分或局部特性是基于模型的,但就模型及其运用的方面,基本上都是基于经验性的可谓之“朴素的模型化思想”达成的。

罗曼·弗里格与斯蒂芬·哈特曼 (2012)

无论是实证科学还是理论科学,模型一直被认为是核心要件。科学方法论或者科学哲学领域,也是笔者所见拥有最接近一般模型理论研究的。然而,这个领域的研究有一些基本的障碍,例如在科学家那里,“模型”一词和“理论”一词常常是被互换性地使用着。当基本概念上都无法明确时,就很难进一步建立起严格和具有指导性的理论或方法论。弗里格与哈特曼在一篇关于科学领域模型的研究综述中这样总结:

模型在科学中扮演重要的角色。然而,尽管它引起了哲学家们很大的兴趣,在什么是模型及其如何起作用的理解上仍然有重大的空白。

斯蒂芬·霍金和伦纳德·蒙洛迪诺 (2010)

不谈科学哲学家对模型概念及作用的理论研究,有一个比较有代表性的例子,显示了一种科学家所持的基于模型的思想。作为当代最有影响力的物理学家之一,霍金曾经相信大统一理论(终极的物理理论,也就是一种绝对真理)的存在,然而后来他放弃了这一点,倒向了某种程度的视角主义。霍金和蒙洛迪诺2010年的书中,表明了这种世界观,还给它起了一个响亮的名号:“依赖模型的现实主义”(或基于模型的唯实论),基本观点是

每一个物理理论或世界图景都是一个模型(通常本质上是一个数学模型)……追问一个模型本身是否真实没有意义,有意义的只在于它是否与观测相符。……同样的物理场景可以用不同的模型来描述,每个模型都有一套不同的基本要素和基本概念。或许,要描述整个宇宙,我们必须在不同情况下使用不同的理论。每个理论对于“现实”或许都有各自不同的理解,但根据基于模型的唯实论,“现实”的这种多样性是可以接受的,不可以说哪一种“现实”比其他“现实”更真实。

阿尔弗雷德·塔斯基 (1936)

如何把直觉的、实体的模型概念与数学和逻辑连接起来,在某种意义上是一个终极挑战[1]。在这个方向上追溯现有的知识体系,不难发现波兰裔数学家、逻辑学家塔斯基的独特位置。塔斯基在1930年代做出的形式系统中真的界定、逻辑后承的界定以及不可证明性定理等工作,奠定了他在逻辑学发展史上堪与哥德尔、弗雷格、亚里士多德等比肩的地位。在此我们特别着重的地方,就是他将模型概念真正引入了逻辑与数学;这个逻辑的模型概念与传统数学(例如几何学家)所使用的模型(例如,一个双曲面的石膏模型)不同,现在大家通常认为它是一种数学结构。塔斯基这样界定“逻辑结论”(或称“逻辑后承”、“逻辑遵循”:即一个句子逻辑上遵循一组句子,可看作这一组句子的逻辑性结果):

说一个句子X逻辑遵循一组句子K,当且仅当K的所有模型同时也是X的模型。

其中所谓“句子的模型”,简单说就是一个集合和其上的关系,可以将句子中的词语映射到其上,令句子成立(为真)。对这背后的意思做出完整解释,超出了本文的范围;但基于本文的语境,简单地说就是,塔斯基揭示了逻辑的真理和逻辑结论是基于模型的。他的工作揭示了模型的另一面:在形式系统中的一面。塔斯基的工作开辟了模型化方面最重要的理论基础;有点惊奇的是,迄今有关他在模型方面一些工作的争议或讨论,在笔者看,仍然处于这个方向的最前沿。

大卫·曼福德 (1998)

在塔斯基开拓性工作的基础上,数理逻辑的重要分支模型论得以建立,然而,从笔者所持的,“模型化”概念与方法的发展角度观察,那一代逻辑学家和数学家在这个方面的思考是有局限的:基本限于形式系统“内部”的考量。关于这一点,美国杰出数学家大卫·曼福德曾做过非常有意思的讨论。他指出,当代数学家几乎都在忙于证明定理,公理化方法占了上风,然而,即使在数学中,也有与实证科学相似的基于模型的研究途径

模型的思想与定理证明相反。这在应用数学里最为突出:模型表示实质性要点,将实验的混沌转换为严谨的数学问题。但纯数学同样充斥着模型:比如说,一个领域发现了一组复杂的例子,不得不去直接处置它们。最好的方法通常是隔离此结构的一部分,有效定义一个更易于处置的模型。

这里提到的模型概念有别于前面所提到的数理逻辑里的模型概念,而与科学研究中的模型概念相似。从一般模型理论和方法学的立场考察,纯数学中基于模型方法的存在具有很大的启示性。

结语

很难说这里引述的文献的代表性如何;它们来自笔者对数千篇原始研究文献的搜集评估过程。这里试图选出一些具有公认影响力的学者的言论或具有代表意义的言论。在对大量文献检索和评估过程中看到,目前并不存在类似一般模型理论或方法学这样一个知识体或聚集中心。关于模型的讨论非常分散:除了科学哲学等少数领域,通常很少专门的、涉及一般性质和原理较为系统的论述。例如在传统的工程技术领域或计算机与信息科学与技术领域虽然大量使用模型或建模,通常都是在直觉与经验性理解基础上讨论某种具体的模型使用或过程。还有很多时候实际应用中的模型并不被称为“模型”(例如许多情形中的图型、“数据”等等)。即使如此,“基于模型”这个术语仍然是当代学术文献中使用频率非常高的词语[2]。这也能说明,关于模型的一般理论和模型化方法论的意义及必要性。笔者的一些工作,例如《模型是什么?》和《一般模型化关系——从模型是什么到如何起作用的基本答案》,就是在这方面的探索的一些初步结果。而这些,都围绕着基于其模型以达成与特定目标相关的功能与目的这一基本思想,在此基础上,我们或可总结和建立起某种一般模型化方法论

——————–

[1] 这里“终极挑战”四个字,是笔者多年前“遭遇”塔斯基,在这个方向上学习思考至今一种很深的体会。这段对塔斯基工作的评介,足足推敲了一整天;参考的笔记,陆续写了近十年。这个挑战一个非常现实的意义,可能就在当今人工智能的发展上。借助对大脑的物理结构的全面模拟,人类就很有可能造出超越自然大脑能力的超级大脑,但从智能如何工作的立场上(正如现在许多研究者对深度学习神经网络工作机制所做的说明),它对制造者却可能会是黑盒子。这个终极挑战所涉及的,可能正是打开这个黑匣子的基本途径。

[2] 例如,近日在中国知网对“文献全部分类”的“主题”搜索“基于模型”,返回结果数目为2,897,537条。同时用相同条件搜索,“建模”为343,506条;“信息化”为623,124条;“自动化”为418,980条;“数字化”为289,416条。

参考文献(略)

作者比特币地址:
1EzfMQ3GVbwqadKydjLqBhiQfZJDPCHBbh

Copyright

  本发布物版权归原作者所有,经原作者许可在企业工程论坛(EE-Forum.org)公开发布,并允许个人及公益性机构非牟利性使用及传播。传播中需保持从标题、署名到各项内容及此声明包括链接地址等完整内容不变。引用或摘编文中内容或观点应符合公认准则。其它机构,或牟利性使用,请预先取得作者许可。保留一切未说明的权利。
  详细说明见: http://www.ee-forum.org/about/copyright ,管理者电子邮箱:admin(at)ee-forum(.)org

Cite Style

GB7714 style: 余彤鹰. 关于“基于模型的思想”的一些引述和评论[EB/OL]. 企业工程论坛, http://www.ee-forum.org/wp/pub/ty/2017-03-p4413.html, 2017-03-25[2017-05-01 12:32]

Chicago style: 余彤鹰, "关于“基于模型的思想”的一些引述和评论", 企业工程论坛, http://www.ee-forum.org/wp/pub/ty/2017-03-p4413.html(accessed 2017-05-01 12:32)

Posted by   2017-03-25(Original)   Hits 73   Modified 2017-03-25
Prev Post: 
Next Post: 

Related Entries:

Leave a Response

You must be logged in to post a comment.